FINITE GROUPS AS ISOMETRY GROUPS

BY

D. ASIMOV

ABSTRACT. We show that given any finite group G of cardinality k+1, there is a Riemannian sphere S^{k-1} (imbeddable isometrically as a hypersurface in \mathbb{R}^k) such that its full isometry group is isomorphic to G. We also show the existence of a finite metric space of cardinality k(k+1) whose full isometry group is isomorphic to G.

Let G be a finite group of k + 1 elements $\{1, g_1, \ldots, g_k\}$.

THEOREM. There exists a Riemannian metric on the sphere S^{k-1} such that the isometry group is isomorphic to G.

PROOF. Label the k+1 vertices of a regular k-simplex Δ_k by the names $1, g_1, \ldots, g_k$ of the elements of G. Assume Δ_k to be inscribed in a standard S^{k-1} sitting in \mathbb{R}^k as usual. $T_y(S^{k-1})$ denotes the tangent space at y.

Now in $T_1(S^{k-1})$ pick an orthonormal frame (v_1,\ldots,v_{k-1}) . Pick $\epsilon>0$ small and let

$$w_i = \epsilon (1 + (i - 1)/4k^2)v_i, \quad 1 \le i \le k - 1.$$

Let

$$Q = \{ \exp_1(w_i) | 1 \le i \le k - 1 \} \cup \{ \exp_1(0) \} \cup \{ w_1 / 10 \}.$$

 \exp_1 is the exponential map $\exp_1: T_1(S^{k-1}) \longrightarrow S^{k-1}$.

Think of G as acting on S^{k-1} by the isometries induced from the permutation representation on the vertices of Δ_k . Let $X = \{gQ | g \in G\}$.

PROPOSITION. With the induced metric from \mathbb{R}^k , the metric space X has its group of isometries isomorphic to G.

PROOF. Clearly G acts as a group of isometries of X, since $X = h\{gQ | g \in G\} = \{hgQ | g \in G\} = \{gQ | g \in G\} = X$.

Conversely, any isometry of X must take the point 1 to some point g, since the points g are characterized by being the only points in X having their

Received by the editors May 8, 1975.

AMS (MOS) subject classifications (1970). Primary 53C20, 54E40, 20C99; Secondary 20D99, 54E35, 53C40.

Key words and phrases. Group, isometry, Riemannian, manifold, the metric space.

390 D. ASIMOV

two nearest neighbors at distance of $\epsilon/10$ and ϵ respectively. Once we know that $1\mapsto g$, the configuration gQ determines the image of the frame (w_1,\ldots,w_{k-1}) at 1, and hence determines the unique isometry of X defined by the element $g\in G$. Of course ϵ must be chosen small enough so that the configurations gQ, $g\in G$ do not "interfere" with one another.

Now we add bumps to S^{k-1} at the points of X using scalar multiplication in \mathbb{R}^k . Let

$$\delta = (1/3) \min \{ \text{dist}_{S^{k-1}}(x, y) | x, y \in X \}.$$

Let $f: [0, \delta] \longrightarrow \mathbf{R}$ be a smooth function satisfying

- (a) $f(s) = 100, 0 \le s \le \delta/2$,
- (b) $f(\delta) = 1$; $f^{(k)}(\delta) = 0$, k = 1, 2, ...
- (c) $f^{(k)}(\delta/2) = 0$, k = 1, 2, ..., and
- (d) f'(s) < 0 if $\delta/2 < s < \delta$.

Now for each point $x \in X$ we remove the disk $\exp_x(D_\delta)$ from S^{k-1} and replace it by the point set $B_x = \{(f(|v|))\exp_x(v)|v \in D_\delta\}$, where D_δ is the (δ) -disk about the origin of $T_x(S^{k-1})$. Clearly the set $S^{k-1} - \bigcup_{x \in X} \exp_x(D_\delta) \cup \bigcup_{x \in X} B_x$ is a smooth S^{k-1} imbedded in \mathbb{R}^k . We give it the induced Riemannian metric from \mathbb{R}^k and denote it by M.

CLAIM: Isom $(M) \approx G$.

PROOF. First we notice that the points of $100 \cdot X \subset M$ must be taken to themselves by any isometry I of M, by the choice of the function f. Clearly the same arguments above for X hold for $100 \cdot X$, hence the isometry $I: M \longrightarrow M$ restricted to $100 \cdot X$ comes from the action of G.

Let us now consider the "bump" B_1 above the point 1. Let us define for $r \ge 0$, $S_r = \{f(r) \cdot \exp_1(v) | |v| = r, v \in T_1(S^{k-1})\}$. In other words, S_r is the (k-2)-sphere of B_1 lying above the (k-2)-sphere about 1 of radius r, for $0 < r \le \delta$, and for r = 0 we set $S_0 = p$, the peak point of B_1 .

Now it is easy to show that the orthogonal trajectories of the S_r 's are geodesics of M and as such must be preserved under any isometry taking p to p.

Thus any isometry I of M which takes p to p (and which must thus leave all points of $100 \cdot X$ fixed) must be a "rotation" on all of B_1 , determined by $I \mid \partial B_1$, carrying each S_r into itself by the "same" element of O(k-2). Similarly, this I must rotate each bump B_r , $x \in X$.

Also this rotation must extend past the boundary of the bumps for some ways, so we can easily extend $I \mid (M - \bigcup_x B_x)$ to an isometry \widetilde{I} of S^{k-1} to itself, by simply "coning" I over $\exp_x(D_\delta)$, $x \in X$. Clearly we will have $\widetilde{I}(x) = x$ for $x \in X$, and it follows easily that $\widetilde{I}: S^{k-1} \longrightarrow S^{k-1}$ is the identity. Hence $I: M \longrightarrow M$ must have been the identity.

Now it is clear that for each $g \in G$ there is one isometry of M determined by the action of g on S^{k-1} , extended to R^k , restricted to M. Now if there is another isometry $I: M \longrightarrow M$ such that $I \mid X = g \mid X$, then $I \circ g^{-1}: M \longrightarrow M$ must leave points of X fixed, so by the above discussion must be the identity. This establishes $\operatorname{Isom}(M) \approx G$.

COROLLARY. Any finite group G is isomorphic to the (full) isometry group of a finite subset X_G of euclidean space. If $\operatorname{card}(G) = k$ then the X_G can be found with $\operatorname{card}(X_G) = k^2 - k$ in euclidean space of dimension k - 1.

PROOF. Simply take $X_G = X$ in the proof of the Theorem, and count (noting that we initially took card(G) = k + 1).

REMARK. Further considerations can very likely reduce the necessary cardinality for X_G to k(k-3). The various numbers

 $d = \min\{\operatorname{card}(X) | G \approx \operatorname{Isom}(X)\}$ and

 $e = \min\{N | G \text{ has a faithful representation into } O(N)\}$ seem to be interesting invariants of a finite group G.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

Current address: School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540